Responsive image
博碩士論文 etd-1227111-093326 詳細資訊
Title page for etd-1227111-093326
論文名稱
Title
脊髓缺血再灌流損傷機制與可能治療方法之研究
The mechanisms and possible therapeutic methods of spinal cord ischemia-reperfusion injury
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-12-22
繳交日期
Date of Submission
2011-12-27
關鍵字
Keywords
發炎反應、自主調節系統、氧氣壓力濃度、缺血前處理、缺血再灌流損傷、脊髓
autoregulation, inflammation, oxygenation, ischemic preconditioning, spinal cord, ischemia-reperfusion injury
統計
Statistics
本論文已被瀏覽 5734 次,被下載 1062
The thesis/dissertation has been browsed 5734 times, has been downloaded 1062 times.
中文摘要
摘 要
研究目的:脊髓缺血性損傷對於在接受主動脈手術的病人來講是一個很嚴重的併發症,在脊髓缺血再灌流的過程中,缺血前處理有保護脊髓的功能,本研究希望能夠了解運用缺血前處理來減少脊髓缺血性損傷時,究竟是經由何種機制產生保護的作用,並且研究脊髓的自主調節系統,是否占有重要的地位。另外,在extracellular signal-regulated kinases 1 and 2 (ERK1/2)的研究中,認為ERK1/2與細胞存活與分化有關,但是有越來越多的證據證實,ERK1/2這條路徑跟缺血再灌流損傷的發炎反應有重要的關連。本研究將研究缺血前處理是否啟動脊髓的自主調節系統,以及阻斷ERK1/2路徑是否減少發炎反應,經由控制這兩種機制是否可以減少脊髓缺血性損傷。
研究方法:第一部分的實驗中,將大白鼠(Sprague-Dawley rat)分成4組,一組是缺血前處理(P)組,一組是缺血再灌流損傷(I/R)組,一組是缺血性前處理之後再加上缺血再灌流損傷(P+I/R)組,最後一組是對照(S)組。我們評估這4組的大白鼠的神經學功能,脊髓的病理切片,局部脊髓血流,以及局部的組織氧壓力濃度。在第二部分的實驗中,大白鼠分成三組,第一組是對照組(DSMO組),只給予dimethyl sulfoxide (DSMO)作為治療藥物,第二組是U0126作為治療藥物(U0126組),實驗動物將給予mitogen-activated protein kinase (MAPK)/ERK1/2的抑制劑U0126來抑制ERK1/2的磷酸化情形。第三組是對照組。我們評估神經學功能、神經細胞存活數量,發炎反應的狀況以及interleukin 1β(IL-1β)的產生。
結果:第一部分的實驗中,(I/R)組,與(S)組、(P)組以及(P+I/R)組,這三組比起來,(I/R)組有明顯的比較差的神經學功能。由存活的神經運動細胞的數量來看,比起(I/R)組而言,可以看到(P)組,(S)組以及(P+I/R)組都有比較多的存活運動神經元。在脊髓局部的血流以及組織氧壓力濃度的實驗中可以發現,(P)組跟(S)組比起來,(P)組有比較高的脊髓局部的血流以及組織氧壓力濃度,而(P+I/R)組和比(I/R)組比起來,(P+I/R)組有比較好的脊髓局部的血流以及組織氧壓力濃度。在第二部分的實驗中,發現早期的ERK1/2的磷酸化情形,在DSMO組有明顯的上升,而且還併有微小膠質細胞的聚集,並且會增加IL-1β的表現。在U0126組,給予U1026治療後可以抑制ERK1/2的磷酸化,微小膠質細胞的活化及脊髓的IL-1β也有明顯的減少,同時神經細胞存活數量及神經功能的表現也有明顯改善。
結論:給予缺血前處理的話可以減少脊髓缺血再灌流損傷,可能的因素之一是啟動脊髓的自主調節系統,而改善了脊髓的局部血液循環以及組織氧壓力濃度。另外,U0126可以有效抑制ERK1/2路徑,減少微小膠質細胞的浸潤及IL-1β的產生,進而改善神經細胞的存活及功能的保存。ERK1/2路徑在脊髓缺血再灌流損傷似乎扮演發炎反應調控者的重要角色。運用這些研究成果,希望進一步的研究成果可能在未來有臨床使用的機會。
Abstract
Objective: Ischemic spinal cord injury is a serious complication of aortic surgery. The mechanism underlying ischemic preconditioning (IPC) protection against spinal cord ischemia/reperfusion (I/R) injury is unclear. We investigated the role of spinal cord autoregulation in tolerance to spinal cord I/R injury induced by IPC. Although the extracellular signal-regulated kinases 1 and 2 (ERK1/2) are generally regarded as related to cell survival and proliferation, increasing evidence suggests that the role of the ERK1/2 pathway in I/R injury is contributory to inflammation. We investigated the effect of blocking ERK1/2 pathway to inhibit inflammation reaction in tolerance to spinal cord I/R injury.
Methods: In the part 1 study, Sprague-Dawley rats were randomly assigned to 4 groups. IPC (P) group animals received IPC by temporary thoracic aortic occlusion (AO) with a 2-F Fogarty arterial embolectomy catheter for 3 min. I/R injury (I/R) group animals were treated with blood withdrawal and temporary AO for 12 min, and shed blood reinfusion at the end of the procedures. (P+I/R) group animals received IPC, followed by 5 min reperfusion, and then I/R procedures for 12 min. Sham (S) group animals received anesthesia and underwent surgical preparation only. Neurological functions were evaluated, and lumbar segments were harvested for histopathological examination. To evaluate the role of autoregulation in IPC, spinal cord blood flow and tissue oxygenation were continuously monitored throughout the procedure duration. In the part 2 study, spinal cord ischemia rats was induced by occluding the thoracic descending aorta with a balloon catheter introduced through a femoral artery, accompanied by concomitant exsanguinations. Rats in the control group were given dimethyl sulfoxide (vehicle) before undergoing spinal cord ischemia/reperfusion injury. In the U0126-treated group, rats were pretreated with an inhibitor of ERK1/2, U0126, to inhibit ERK1/2 phosphorylation. The sham rats underwent aortic catheterization without occlusion. Parameters, including neurologic status, neuronal survival, inflammatory cell infiltration, and interleukin-1β production in the spinal cords, were compared between groups.
Results: The Tarlov scores in the (I/R) group were significantly lower than those in the (S), (P), and (P+I/R) groups on days 1, 3, 5, and 7. The numbers of surviving motor neurons in the (S), (P), and (P+I/R) groups were significantly higher than those in the (I/R) group. The (P) group exhibited higher spinal cord blood flow and tissue oxygenation after reperfusion than the (S) group. The (P+I/R) group exhibited higher spinal cord blood flow and tissue oxygenation within the first 60 min after reperfusion than the (I/R) groups. In the part 2 study, early ERK1/2 phosphorylation was observed after injury in the control group, followed by abundant microglial accumulation in the infarct area and increased interleukin-1β expression. In the U0126 group, U0126 treatment completely blocked ERK1/2 phosphorylation. Microglial activation and spinal cord interleukin-1β levels were significantly reduced. Neuronal survival and functional performance were improved.
Conclusions: IPC ameliorates spinal cord I/R injury in rats, probably mediated by triggering spinal cord autoregulation and improving local spinal cord blood flow and tissue oxygenation. The ERK1/2 pathway may play a noxious role in spinal cord ischemia/reperfusion injury by participating in inflammatory reactions and cytokine production. According to our findings, these concepts may be the new therapeutic targets in patients requiring aortic surgery.
目次 Table of Contents
目 錄
論文審定書………………………………………… i
誌謝………………………………………………… ii
中文摘要…………………………………………… iii
英文摘要…………………………………………… v
第 一 章 前言……………………………………… 1
第 二 章…………………………………………… 4
2.1材料與方法…………………………………… 4
2.1.1實驗動物……………………………………… 4
2.1.2實驗設計.……………………………………… 5
2.1.3 脊髓再灌流損傷的實驗模式………………… 5
2.1.4脊髓的缺血前處理的實驗模式………………. 5
2.1.5 脊髓的血流量測量……………………………. 6
2.1.6 脊髓的組織氧氣壓力監測……………………. 6
2.1.7神經學的評估…………………………………... 7
2.1.8脊髓組織切片備置……………………………... 7
2.1.9 組織免疫染色…………………………………... 7
2.1.10計算運動神經元存活量……………………….. 8
2.1.11統計學分析……………………………………... 8
2.2結果………………………………………....... 9
2.2.1血流動力學的指數…………………………….... 9
2.2.2後肢神經學表現.……………………………… 10
2.2.3組織病理檢查報告……………………………. 12
2.2.4脊髓血流監視結果…………………………… 14
2.2.5脊髓的組織氧壓監測結果……………………. 16
2.3討論…………………………………………....... 18
2.4結論…………………………………………....... 25
第 三 章 …………………………………………… 26
3.1材料與方法…………………………………...... 26
3.1.1實驗動物……………………………………….. 26
3.1.2實驗設計.………………………………………… 26
3.1.3脊髓缺血再灌流的實驗模式…………………… 26
3.1.4神經學的評估……………………………………. 27
3.1.5脊髓組織切片備置……………………………... 27
3.1.6組織免疫染色………………………………….... 27
3.1.7組織ERK1/2磷酸化測定…………………….... 27
3.1.8脊髓組織中interlukin-1β的含量測定……….... 28
3.1.9統計分析…………………………………….... 28
3.2結果……………………………………………..... 30
3.2.1動物基本資料……………………………….... 30
3.2.2脊髓ERK1/2磷酸化的研究.………………….. 30
3.2.3神經學評估…………………………………….. 32
3.2.4神經細胞存活結果……………………………... 34
3.2.5微小膠質細胞的活化分析…………………….... 36
3.2.6脊髓組織interlukin-1β的含量測定………….... 38
3.3討論………………………………………………... 40
3.4結論……………………………………………… 42
第 四 章 總 結…………………………………… 43
參考文獻……………………………………………………… 44
附錄…………………………………………………… 53

圖 次
圖一 後肢神經學表現…………………………………… 11
圖二 脊髓組織病理檢查………………………………… 13
圖三 脊髓血流監視結果………………………………… 15
圖四 脊髓的組織氧壓監測結果………………………… 17
圖五 脊髓ERK1/2磷酸化的研究……………………… 31
圖六 後肢神經學表現…………………………………… 33
圖七 脊髓神經細胞存活結果…………………………… 35
圖八 微小膠質細胞的活化分析………………………… 37
圖九 脊髓組織interlukin-1β的含量測定……………… 39

表 次
表一 血流動力學的指數………………………………… 9

參考文獻 References
參 考 文 獻

1. Etz CD, Luehr M, Kari FA, Bodian CA, Smego D, Plestis KA, et al. Paraplegia after extensive thoracic and thoracoabdominal aortic aneurysm repair: does critical spinal cord ischemia occur postoperatively? J Thorac Cardiovasc Surg 2008;135:324-30.
2. Hnath JC, Mehta M, Taggert JB, Sternbach Y, Roddy SP, Kreienberg PB, et al. Strategies to improve spinal cord ischemia in endovascular thoracic aortic repair: Outcomes of a prospective cerebrospinal fluid drainage protocol. J Vasc Surg 2008;48:836-40.
3. Bisdas T, Redwan A, Wilhelmi M, Haverich A, Hagl C, Teebken O, et al. Less-invasive perfusion techniques may improve outcome in thoracoabdominal aortic surgery. J Thorac Cardiovasc Surg 21 2010;140:1319-24.
4. Matsuda H, Ogino H, Fukuda T, Iritani O, Sato S, Iba Y, et al. Multidisciplinary approach to prevent spinal cord ischemia after thoracic endovascular aneurysm repair for distal descending aorta. Ann Thorac Surg 2010;90:561-5.
5. Lu K, Liang CL, Chen HJ, Chen SD, Hsu HC, Liliang PC, et al. Injury severity and cell death mechanisms: effects of concomitant hypovolemic hypotension on spinal cord ischemia-reperfusion in rats. Exp Neurol 2004;185:120-32.
6. Lu K, Cho CL, Liang CL, Chen SD, Liliang PC, Wang SY, et al. Inhibition of the MEK/ERK pathway reduces microglial activation and interleukin-1-beta expression in spinal cord ischemia/reperfusion injury in rats. J Thorac Cardiovasc Surg 2007;133:934-41.
7. Seren M, Budak B, Turan N, Parlar AI, Akar F, Ulus AT. Collaborative therapy with nebivalol and L-NAME for spinal cord ischemia/reperfusion injury. Ann Vasc Surg 2008;22:425-31.
8. Cohen MV, Downey JM. Is It Time to Translate Ischemic Preconditioning's Mechanism of Cardioprotection into Clinical Practice? J Cardiovasc Pharmacol Ther. 2011;16:273-80.
9. Wu Q, Gui P, Wu J, Ding D, Purusram G, Dong N, et al. Effect of limb ischemic preconditioning on myocardial injury in patients undergoing mitral valve replacement surgery. Circ J. 2011;75:1885-9.
10. Brevoord D, Hollmann MW, de Hert SG, van Dongen EH, Heijnen BG, de Bruin A, et al. Effect of remote ischemic conditioning on atrial fibrillation and outcome after coronary artery bypass grafting (RICO-trial). BMC Anesthesiol. 2011;11:11.
11. Hahn O, Blazovics A, Vali L, Kupcsulik PK. The effect of ischemic preconditioning on redox status during liver resections-randomized controlled trial. J Surg Oncol. 2011 Jul 8. doi: 10.1002/jso.21907.
12. Zimmerman RF, Ezeanuna PU, Kane JC, Cleland CD, Kempananjappa TJ, Lucas FL, et al. Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney Int. 2011 Jun 15. doi: 10.1038/ki.2011.156.
13. Zvara DA, Colonna DM, Deal DD, Vernon JC, Gowda M, Lundell JC. Ischemic preconditioning reduces neurologic injury in a rat model of spinal cord ischemia. Ann Thorac Surg 1999;68:874-80.
14. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 2002;22:6401-7.
15. Cizkova D, Carmel JB, Yamamoto K, Kakinohana O, Sun D, Hart RP, et al. Characterization of spinal HSP72 induction and development of ischemic tolerance after spinal ischemia in rats. Exp Neurol 2004;185:97-108.
16. Steiger HJ, Hänggi D. Ischaemic preconditioning of the brain, mechanisms and applications. Acta Neurochir (Wien) 2007;149:1-10.
17. Hoyte LC, Papadakis M, Barber PA, Buchan AM. Improved regional cerebral blood low is important for the protection seen in a mouse model of late phase ischemic preconditioning. Brain Res 2006;1121:231-7.
18. Nakamura H, Katsumata T, Nishiyama Y, Otori T, Katsura K, Katayama Y. Effect of ischemic preconditioning on cerebral blood flow after subsequent lethal ischemia in gerbils. Life Sci 2006;78:1713-9.
19. Chang L, Karin M. Mammalian MAP kinase signaling cascades. Nature. 2001;410:37-40.
20. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewka E, Morgenbesser SD, et al. ERKs: a family of protein-serine/threonine kinase that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 1991;65:663-75.
21. Nishida E, Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci. 1993;18:128-31.
22. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greeberg ME. Opposing effects of ERK and JUNK/p38 MAP kinases on apoptosis. Science. 1995;270:1326-31.
23. Segal RA, Greenberg ME. Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci. 1995;19:463-89.
24. Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, et al. Persistent activation of ERK contributes to glutamate induced oxidative toxicity in a neuronal cell line and primary neuron cultures. J Biol Chem. 2000;275:12200-6.
25. Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, et al. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem. 2002;277:12710-7.
26. Subramaniam S, Zirrgiebel U, von Bohlen Und Halbach O, Strelau J, Laliberte C, Kaplan DR, et al. ERK activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3. J Cell Biol. 2004;165:357-69.
27. Satoh T, Nakatsuka D, Watanabe Y, Nagata I, Kikuchi H, Namura S. Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci Lett. 2000;288:163-6.
28. Mori T, Wang X, Jung JC, Sumii T, Singhal AB, Fini ME, et al. Mitogen-activated protein kinase inhibition in traumatic brain injury: in vitro and in vivo effects. J Cereb Blood Flow Metab. 2002;22:444-52.
29. Murray B, Alessandrini A, Cole AJ, Yee AG, Furshpan EJ. Inhibition of the p44/42 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity. Proc Natl Acad Sci U S A. 1998;95:11975-80.
30. Alessandrini A, Namura S, Moskowitz MA, Bonventre JV. MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci U S A. 1999;96:12866-9.
31. Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, et al. Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci U S A. 2001;98:11569-74.
32. Cho DG, Mullory MR, Chang PA, Johnson MD, Aharon AS, Robison TA, et al. Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest. J Thorac Cardiovasc Surg. 2004;127:1033-40.
33. Pearson VL, Rothwell NJ, Toulmond S. Excitotoxic brain damage in the rat induces interleukin-1beta protein in microglia and astrocytes: correlation with the progression of cell death. Glia. 1999;25:311-23.
34. Gibson RM, Rothwell NJ, Le Feurvre RA. CNS injury: the role of the cytokine IL-1. Vet J. 2004;168:230-7.
35. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147(Suppl 1):S232-40.
36. Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001;2:734-44.
37. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ. Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci. 2001;21:5528-34.
38. Rothwell N. Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav Immun. 2003;17:152-7.
39. Loddick SA, Wong ML, Bongiorno PB, Gold PW, Licinio J, Rothwell NJ. Endogenous interleukin-1 receptor antagonist is neuroprotective. Biochem Biophys Res Commun. 1997;234:211-5.
40. Lazovic J, Gasu A, Lin HW, Rothstein RP, Krady JK, Smith MB, et al. Neuroinflammation and both cytotoxic and vasogenic edema are reduced in interleukin-1 type 1 receptor-deficient mice conferring neuroprotection. Stroke. 2005;36:2226-31.
41. Wang ZQ, Wu DC, Huang FP, Yang GY. Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res. 2004;996:55-66.
42. Bonheur JA, Albadawi H, Patton GM, Watkins MT. A noninvasive murine model of hindlimb ischemia-reperfusion injury. J Surg Res 2004;116:55-63.
43. Toumpoulis IK, Anagnostopoulos CE, Drossos GE, Malamou-Mitsi VD, Pappa LS, Katritsis DG. Does ischemic preconditioning reduce spinal cord injury because of descending thoracic aortic occlusion? J Vasc Surg 2003;37:426-32.
44. Park HP, Jeon YT, Hwang JW, Kang H, Lim SW, Kim CS, et al. Isoflurane preconditioning protects motor neurons from spinal cord ischemia: its dose-response effects and activation of mitochondrial adenosine triphosphate-dependent potassium channel. Neurosci Lett 2005;387:90-4.
45. Weir CJ, Zivin JA, Lyden PD. Inter-relationships between spinal cord blood flow, neuronal death and neurological function in rabbit spinal cord ischemia. Brain Res 2002;946:43-51.
46. Nakamura M, Nakakimura K, Matsumoto M, Sakabe T. Rapid tolerance to focal cerebral ischemia in rats is attenuated by adenosine A1 receptor antagonist. J Cereb Blood Flow Metab 2002;22:161-70.
47. Perez-Pinzon MA, Vitro TM, Dietrich WD, Sick TJ. The effect of rapid preconditioning on the microglial, astrocytic and neuronal consequences of global cerebral ischemia. Acta Neuropathol 1999;97:495-501.
48. Abraham VS, Swain JA, Forgash AJ, Williams BL, Musulin MM. Ischemic preconditioning protects against paraplegia after transient aortic occlusion in the rat. Ann Thorac Surg 2000;69:475-9.
49. Sirin BH, Ortaç R, Cerrahoğlu M, Saribülbül O, Baltalarli A, Celebisoy N, et al. Ischaemic preconditioning reduces spinal cord injury in transient ischaemia. Acta Cardiol 2002;57:279-85.
50. Caparrelli DJ, Cattaneo SM 2nd, Bethea BT, Shake JG, Eberhart C, Blue ME, et al. Pharmacological preconditioning ameliorates neurological injury in a model of spinal cord ischemia. Ann Thorac Surg 2002;74:838-44.
51. Yang C, Ren Y, Liu F, Cai W, Zhang, Nagel DJ, et al. Ischemic preconditioning suppresses apoptosis of rabit spinal neurocytes by inhibiting ASK1-14-3-3 dissociation. Neurosci Lett 2008;441:267-71.
52. Fan T, Wang CC, Wang FM, Cheng F, Qiao H, Liu SL, et al. Experimental study of the protection of ischemic preconditioning to spinal cord ischemia. Surg Neurol 1999;52:299-305.
53. Lindsberg PJ, O'Neill JT, Paakkari IA, Hallenbeck JM, Feuerstein G. Validation of laser-Doppler flowmetry in measurement of spinal cord blood flow. Am J Physiol 1989;257:H674-80.
54. Yamada T, Morimoto T, Nakase H, Hirabayashi H, Hiramatsu K, Sakaki T. Spinal cord blood flow and pathophysiological changes after transient spinal cord ischemia in cats. Neurosurgery 1998;42:626-34.
55. Ulus F, Hellberg A, Ulus AT, Karacagil S. Alterations in cerebrospinal fluid PO2, PCO2, and pH measurements during and after experimental thoracic aortic cross-clamping. Ann Vasc Surg 2009;23:122-7.
56. Marsala M, Yaksh TL. Transient spinal ischemia in the rat: characterization of behavioral and histopathological consequences as a function of the duration of aortic occlusion. J Cereb Blood Flow Metab. 1994;14:526-35.
57. Duggal N, Lach B. Selective vulnerability of the lumbosacral spinal cord after cardiac arrest and hypotension. Stroke. 2002;33:116-21.
58. Lau D, Mollnau H, Eiserich JP, Freeman BA, Daiber A, Gehling UM, et al. Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc Natl Acad Sci U S A. 2005;102: 431-6.
59. Landmann R, Ludwig C, Obrist R, Obrecht JP. Effect of cytokines and lipopolysaccharide on CD14 antigen expression in human monocytes and macrophages. J Cell Biochem. 1991;47:317-29.
60. Roy A, Fung YK, Liu X, Pahan K. Up-regulation of microglial CD11b expression by nitric oxide. J Biol Chem. 2006;281:14971-80.
61. Gonzalez-Scarano F, Baltuch G. Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci. 1999;22: 219-40.
62. Ling EA, Wong WC. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia. 1993; 7:9-18.
63. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine mouse model of Parkinson disease. J Neurosci. 2002;22:1763-71.
64. Barcia C, Sanchez Bahillo A, Fernandez-Villalba E, Bautista V, Poza Y, Poza M, Fernandez-Barreiro A, et al. Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia. 2004;46:402-9.
65. Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, et al. Role of microglia in central nervous system infections. Clin Microbiol Rev. 2004;17:942-64.
66. Mabuchi T, Kitagawa K, Ohtsuki T, Kuwabara K, Yagita Y, Yanagihara T, et al. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke. 2000;31:1735-43.
67. Hazan I, Dana R, Granot Y, Levy R. Cytosolic phospholipase A2 and its mode of activation in human neutrophils by opsonized zymosan. Correlation between 42/44 kDa mitogen-activated protein kinase, cytosolic phospholipase A2 and NADPH oxidase. Biochem J. 1997;326:867-76.
68. Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R, Houliston RA, Martin J, Zachary I. Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS Lett. 1997;420:28-32.
69. Zhang C, Baumgartner RA, Yamada K, Beaven MA. Mitogenactivated protein (MAP) kinase regulates production of tumor necrosis factor-alpha and release of arachidonic acid in mast cells. Indications of communication between p38 and p42 MAP kinases. J Biol Chem. 1997;272:13397-402.
70. Newton R, Cambridge I, Hart LA, Stevens DA, Lindsay MA, Barnes PJ. The MAP kinase inhibitors, PD098059, U0126 and SB203580, inhibit IL-1beta-dependent PGE(2) release via mechanistically distinct processes. Br J Pharmacol. 2000;130:1353-61.
71. Eng LF, Ghirnikar RS. GFAP and astrogliosis. Brain Pathol. 1994;4: 229-37.
72. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24:2143-55.
73. Rudge JS, Silver J. Inhibition of neuritic growth on astroglial scars in vitro. J Neurosci. 1990;10:3594-603.
74. McKeon RJ, Schreiber RC, Rudge JS, Silver J. Reduction of neuritic outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci. 1991;11:3398-411.
75. Menet V, Gimenez y Ribotta M, Chauvet N, Drian MJ, Lannoy J, Collucci-Guyon E, et al. Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neuritic growth by modifying adhesion molecule expression. J Neurosci. 2001;21:6147-58.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code