Responsive image
博碩士論文 etd-1229103-114840 詳細資訊
Title page for etd-1229103-114840
論文名稱
Title
生物體內超音波共振效應之應用
The Application of Ultrasonic Resonant Effects in Vivo
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-11-27
繳交日期
Date of Submission
2003-12-29
關鍵字
Keywords
超音波、草履蟲、空孔效應、生物效應、共振頻率
bioeffect, ultrasound, paramecium, cavitation, resonant frequency
統計
Statistics
本論文已被瀏覽 5734 次,被下載 40
The thesis/dissertation has been browsed 5734 times, has been downloaded 40 times.
中文摘要
中文摘要
本論文的目的在於研究單細胞原生動物—草履蟲(Paramecium),經由不同的超音波頻率以及各種聲學參數的設定來進行超音波照射,其生物或行為上所可能產生的變化機制,以呈現出超音波生物效應在單細胞生物研究上的完整面貌。以往超音波應用於生物、食品或醫藥等相關產業時,多半使用較高強度的超音波,產生強大的熱效應或劇烈的空蝕效應來破壞細胞與組織;然而這些超音波相關技術雖然行之有年,卻因為對於各種聲學參數與生物間的相對關係並不瞭解,亦或是相關理論基礎的不完備,造成這些超音波技術在使用上只知其然不知所以然,也就讓這項技術看似實用,事實上卻潛藏許多的危機。因為當越來越多的醫療儀器使用超音波來進行相關的治療或復健時,這項技術所可能造成的破壞效應便不是我們所樂見的。
也因為這項議題的嚴重性,所以對於超音波生物效應的相關研究便刻不容緩。本論文經由多項文獻的回顧中發現,在過去對超音波生物效應的研究上,多半是以高強度的超音波穿透組織或細胞,誘發多細胞的組織或細胞內所含的氣室與空氣管路產生劇烈振動,導致組織中接近氣室或空氣管路的細胞,因為機械剪切力而造成細胞膜或細胞壁的破壞,因而產生再生率的降低或相對成長率的突降。以上的過程在文獻中稱之為穩態空孔效應。這些研究使得超音波在生物效應的研究及應用上,被定位為破壞與消除的機制,但對於超音波所致的建設性生物效應(例如助長、增量等),卻往往忽略。
本論文即針對上述問題,並考慮多細胞生物在接受超音波照射時,其內部各組織或結構常互相關連,導致所衍生的生物效應往往極為複雜,而不易觀察出生物效應產生的真正機制,因此特別考量以生命最原始形態的單細胞動物—草履蟲為試體,希望能更清楚呈現超音波對生物效應的影響。本研究並以雷利(Rayleigh)氣泡振動理論模擬試體的結構特性,計算其共振頻率,以作為區分共振頻率與非共振頻率區之依據,並適度的安排照射時間與強度,作為超音波照射聲場的設定。而在生物效應的觀察上,則是將觀察影像經數位化處理後,進行照射前後的比較。其樣本統計的方法則以血球計數法與顯微鏡計數的方法互相搭配使用,以增加觀測之精度。此研究之結果,不僅可釐清超音波聲學參數中有關頻率、強度與照射時間在生物效應的相對關係,更可作為爾後超音波生物技術之研究基礎。
Abstract
ABSTRACT
The effects of ultrasonic irradiation at different frequencies, i.e. 0.25, 0.5, 1, and 5 MHz, on the biological reaction of the single cell creature have been investigated. When multi-cell creature is exposed to ultrasound, this reaction will lead the biological effect becomes complex. Therefore, in this dissertation, a single cell creature is chosen to study the biological effects induced by ultrasound exposure. The paramecium, which possesses many features typical of higher-order animal cells, was considered as an appropriate choice for this study. The ability shown by ultrasound in promoting and/or accelerating many reactions has been shown to be a useful field. The resonant frequency of paramecium by using the ultrasound irradiation is an important parameter in this research. All other parameters being kept constant, it has been ascertained that an appropriate frequency value of ultrasound can be selected, capable of driving a biological reaction to its suitable yield. The oscillation of the cells in response to the ultrasound radiation is simulated using Rayleigh-Plesset’s bubble activation theory. The resonant frequency of the unicellular creature is then calculated. In the experiment, the resonant (0.5 and 1 MHz) and non-resonant (0.25 and 5 MHz) frequencies were employed.
The theoretical resonant frequency of the paramecium vacuole is among 0.5013~1.2703 MHz. In this thesis, the experiment included two different series. The exposure intensity is the major subject of the first experimental series to study the bioeffect of ultrasound. The waveform was set to the tone pulse mode, pulsing 1:1. The exposure duration was continued and maintained 5 minutes. For a given frequency, exposures of the paramecium were made over a range of intensities spanning 0 to 1.7 mW/cm2. The second experimental series was focused on the exposure duration of the ultrasound. The transducers were operating in a pulsed mode with two duty cycles of 1:1 and 1:9. All insonated samples were exposed to ultrasound with a spatial peak temporal peak intensity (SPTP) of 0.127 mW/cm2. The total “with signal” time was about 6 minutes in each trial. In addition, the control samples and the treated samples would be re-incubated up to the 96 hr. When the 1 MHz frequency of ultrasound was irradiated in the samples, there was about 24% inhibition rate and 30% enhancement rate in the first experimental series. The 0.5 MHz frequency of ultrasound, which approaches to the resonant frequency range, also appeared the inhibitive and beneficial effect. In the second experimental series, the relative growth number was about 32.4% higher than that of unexposed sample. The inhibition or enhancement growth conditions did not appear apparently during irradiation the non-resonant frequency of ultrasound. Moreover, experimental evidence suggests that the sustaining growth effect can be expected, when the irradiation time is divided into parts.
目次 Table of Contents
CONTENTS

Contents……………………………………………………………………….....I
List of Figures…………………………………………………………………...II
List of Tables…………………………………………………………………....V
中文摘要………………………………………………………………………...VI
Abstract……………………………………………………………………….VIII
Chapter 1. Introduction…………………………..….………...…………………1
1.1 Algae or Plant Tissues………………………………….………………4
1.2 Insect Larvae………………………………………………..………….8
1.3 Cell Suspensions……………………………………..……….……..…9
1.4 Protozoan………………………………………………………...……15
1.4.1 Cellular Structure and Function…………………………………...16
1.4.1.1 Digestion………………………………………………………16
1.4.1.2 Respiration………………………………………………….…17
1.4.1.3 Reproduction…………………………………………………..17
1.5 Ciliophora…..………...………………………….……………………18
1.6 Paramecium………………...…………………………………………18
1.6.1 Movement…………..…….…………….…………………………20
1.6.2 Feeding………………………….………….……………….……..20
1.6.3 Reproduction…………..………….……………………..…..…….21
Chapter 2. Theory………………………………………………………………31
Chapter 3. Methods…………………………………………………………….41
3.1 Cell culture and proliferation…………………..……..………………..41
3.2 The exposure procedure………………………………………………..42
Chapter 4. Results and discussions……………………………………………..53
4.1 Exposure intensity test…………………………………………..……..53
4.2 Exposure duration test……………………………………….………...58
Chapter 5. Conclusion and future works………………………….……………86
Reference……………………………………………………………………….88
參考文獻 References
REFERENCES

1. Dyson M. and Pond J.B., The Effect of Pulsed Ultrasound on Tissue Regeneration. Physiotherapy (1970) 136-142

2. Suslick KS: Ultrasound: Its Chemical, Physical, and Biological Effects. VCH Publishers, Weinheim, F.R.G., 1988; 287-303.

3. Miller D.L., Cell death thresholds in Elodea for 0.45-10 MHz ultrasound compared to gas-body resonance theory, Ultrasound in Med. & Biol., 5; 1979a; 351-357

4. Giordano R., Leuzzi U. and Wanderlingh F., Effects of ultrasound on unicellular algae, J. Acoust. Soc. Am., 60; 1976; 275-278

5. Miller D.L., Effects of a high-amplitude 1 MHz standing ultrasonic field on the Algae Hydrodictyon, IEEE Trans. Ultrasonics Ferroelectrics Freq. Control, UFFC-33; 1986; 165-170

6. Carstensen E.L., Child S.Z., Law W.K., Horowitz D.R., Miller M.W., Cavitation as a mechanism for the biological effects of ultrasound on plant roots, J. Acoust. Soc. Am., 66; 1979; 1285-1291

7. Bleaney B.I.and Oliver R., The effect of irradiation of Vicia faba with 1.5 MHz ultrasound, Br. J. Radiol., 45; 1972; 358-361

8. Miller M.W., Voorhes S.M., Carstensen E.L. and Eames F.A., An histological study of the effect of ultrasound on growth of Vicia faba roots, Rad. Bot., 14; 1974; 201-206

9. Miller D.L., The effects of ultrasonic activation of gas bodies in Elodea leaves during continuous and pulsed irradiation at 1 MHz, Ultrasound in Med. & Biol., 3; 1977; 221-240

10. Hayes C.F., Chingon H.T.G., Ikeda M.B., Sanderson S.L., Deaver J., Ultrasonic effects Dacus Dorsalis. Ultrasound in Med. & Biol., 9; 1983; 185-189
11. Child S.Z. and Carstensen E.L., Effects of ultrasound on Drosophila: iv. Pulsed exposures of eggs, Ultrasound in Med. & Biol., 8; 1982; 311-312

12. Carstensen E.L. and Flynn H.G., “The Potential for Transient Cavitation in Pulsed Ultrasound”, Ultrasound in Med. & Biol., 8; 1982; L720-L724

13. Carstensen E.L., Child S.Z., Lam S., Miller D.L. and Nyborg W.L., “Ultrasonic Gas-Body Activation in Drosophila”, Ultrasound in Med. & Biol., 9(5); 1983; 473-477

14. Ayme E.J. and Carstensen E.L., “Cavitation Induced by Asymmetric, Distorted Pulsed of Ultrasound: A Biological Test”, Ultrasound in Med. & Biol., 15(1); 1989; 61-66

15. Child S.Z., Raeman C.H., Walters E., and Carstensen E.L., “The Sensitivity of Drosophila Larvae to Continuous-Wave Ultrasound”, Ultrasound in Med. & Biol., 18(8); 1992; 725-728

16. Bailey M.R., Dalecki D., Child S.Z., Raeman C.H., Penney D.P., Blackstock D.T. and Carstensen E.L., “Bioeffects of Positive and Negative Acoustic Pressure in vivo”, J. Acoust. Soc. Am., 100(6); 1996; 3941-3946

17. Dooley D.A., Child S.Z., Cartensen E.L. and Miller M.W., “The Effects of Continuous Wave and Pulsed Ultrasound on Rat Thymocytes In Vitro”, Ultrasound in Med. & Biol., 9; 1983; 379-384

18. Suchkova V., Carstensen E.L. and Francis C.W., “Ultrasound Enhancement of Fibrinolysis at Frequencies of 27 to 100 KHz”, Ultrasound in Med. & Biol., 28(3); 2002; 377-382

19. Körpinar M.A. and Erdincler D., “The Effect of Pulsed Ultrasound Exposure on The Oxygen Dissociation Curve of Human Erythrocytes in In Vitro Conditions”, Ultrasound in Med. & Biol., 28(11); 2002; 1565-1569

20. Coakley W.T. and Hampton D., Quantitative relationships between ultrasonic cavitation and effects upon Amoebae at 1MHz, J. Acoust. Soc. Am., 50; 1971; 1546-1553

21. Kaufman G.E. and Miller M.W., Growth retardation in Chinese Hamster V-79 cells exposed to 1 MHz ultrasound, Ultrasound in Med. & Biol., 4; 1978; 139-144

22. Miller D.L., Bao S. and Morris J. E., “Sonoporation of Cultured Cells in the Rotation Tube Exposure System”, Ultrasound in Med. & Biol., 25(1); 1999; 143-149

23. Brayman A.A. and Miller M.W., “Bubble Cycling and Standing Waves in Ultrasonic Cell Lysis ”, Ultrasound in Med. & Biol., 18(4); 1992; 411-420

24. Brayman A.A. and Miller M.W., “Cell Density Dependence of the Ultrasonic Degassing of Fixed Erythrocyte Suspensions”, Ultrasound in Med. & Biol., 19(3); 1993; 243-252

25. Poliachik S. L., Chandler W.L., Mourad P.D., Bailey M.R., Bloch S., Cleveland R.O., Kaczkowski P., Keilman G., Porter T. and Crum L.A., “Effect of High-Intensity Focused Ultrasound on Whole Blood with and without Microbubble Contrast Agent”, Ultrasound in Med. & Biol., 25(6); 1999; 991-998

26. Böhm H., Anthony P., Davey M.R., Briarty L.G., Power J.B., Lowe K.C., Benes E. and Gröschl M., “Viability of Plant Cell Suspensions Exposed to Homogeneous Ultrasonic Fields of Different Energy Density and Wave Type”, Ultrasonics, 38(1-8); 2000; 629-632

27. Radel S., McLoughlin A.J., Gherardini L., Doblhoff-Dier O. and Benes E., “Viability of Yeast Cells in Well Controlled Propagating and Standing Ultrasonic Plane Waves”, Ultrasonics, 38(1-8); 2000; 633-637

28. Lin L., Wu J., Ho K.P. and Qi S., “Ultrasound-Induced Physiological Effects and Secondary Metabolite (Saponin) Production in Panax Ginseng Cell Cultures”, Ultrasound in Med. & Biol., 27(8); 2001; 1147-1152

29. Doblhoff-Dier O., Gaida T., Katinger H., and others, “A Novel Ultrasonic Resonance Field Device for the Retention of Animal Cells”, Biotechnol. Prog, 10(4); 1994; 428-432

30. Feigl T., Völklein B., Iro H., Ell C. and Schneider T., “Biophysical Effects of High-Energy Pulsed Ultrasound on Human Cells”, Ultrasound in Med. & Biol., 22(9); 1996; 1267-1275

31. Miller D.L., The botanical effects of ultrasound: A review, Env. Exp. Bot., 23; 1983; 1-27

32. Cum G., Galli G., Gallo R., and Spadaro A., Role of frequency in the ultrasonic activation of chemical reactions, Ultrasonics, 30; 1992; 267-270

33. Parvizi J., Wu C.C., Lewallen D.G., Greenleaf J.F. and Bolander M.E., “Low-Intensity Ultrasound Stimulates Proteoglycan Synthesis in Rat Chondrocytes by Increasing Aggrecan Gene Expression”, J. Orthop. Res., 17(4); 1999; 488-494

34. Naruse K., Mikuni-Takagaki Y., Azuma Y., Ito M., Oota T., Kameyama K. and Itoman M., “Anabolic Response of Mouse Bone-Marrow-Derived Stromal Cell Clone ST2 Cells to Low-Intensity Pulsed Ultrasound”, Biochem. Biophys. Res. Commun., 268(1); 2000; 216-220

35. Takikawa S., Matsui N., Kokubu T., Tsunoda M., Fujika H., Mizuno K. and Azuma Y., “Low-Intensity Pulsed Ultrasound Initiates Bone Healing in Rat Nonunion Fracture Model”, J. Ultrasound Med., 20(3); 2001; 197-205

36. Harle J., Salih V., Mayia F., Knowles J.C. and Olsen I., “Effects of Ultrasound on the Growth and Function of Bone and Periodontal Ligament Cells In Vitro”, Ultrasound in Med. & Biol., 27(4); 2001; 579-586

37. Kokubo T., Matsui N., Fujioka H., Tsunoda M., and Mizuno K., Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts, Biochem. Biophys. Res. Commun., 256; 1999; 284-287

38. Kouji N., Yuko M.T., Yoshiaki A., Masaya I., Tomohiro O., Kohzoh K., and Moritoshi I., Anabolic response of mouse bone-marrow-derived stromal cell clone ST2 cells to low-intensity pulsed ultrasound, Biochem. Biophys. Res. Commun., 268; 2000; 216-220

39. Jamie H., Vehid S., Fares M., Jonathan C.K., and Jrwin O., Effects of ultrasound on the growth and function of bone and periodontal ligament cells in vitro, Ultrasound in Med. & Biol., 27; 2001; 579-586

40. Dalecki D., Raeman C.H., Child S.Z., Penney D.P. and Carstensen E.L., “Remnants of Albunex® Nucleate Acoustic Cavitation”, Ultrasound in Med. & Biol., 23(9); 1997; 1405-1412

41. Dalecki D., Raeman C.H., Child S.Z., Penney D.P., Mayer R. and Carstensen E.L., “The Influence of Contrast Agents on Hemorrhage Produced by Lithotripter fields”, Ultrasound in Med. & Biol., 23(9); 1997; 1435-1439

42. Dalecki D., Child S.Z., Raeman C.H., Xing C., Gracewski S. and Carstensen E.L., “Bioeffects of Positive and Negative Acoustic Pressures in Mice Infused with Microbubbles”, Ultrasound in Med. & Biol., 26(8); 2000; 1327-1332

43. Miller D.L. and Song J., “Lithotripter Shock Waves with Cavitation Nucleation Agents Produce Tumor Growth Reduction and Gene Transfer In Vivo”, Ultrasound in Med. & Biol., 28(10); 2000; 1343-1348

44. Miller D.L., Dou C. and Song J., “DNA Transfer and Cell Killing in Epidermoid Cells by Diagnostic Ultrasound Activation of Contrast Agent Gas Bodies In Vitro”, Ultrasound in Med. & Biol., 29(4); 2003; 601-607

45. Miller D.L. and Song, J.,“Tumor Growth Reduction and DNA Transfer by Cavitation-Enhanced High-Intensity Focused Ultrasound In Vivo”, Ultrasound in Med. & Biol., 29(6); 2003; 887-893

46. Horder M.M., Barnett S.B., Vella G.J. and Edwards M.J., “Ultrasound-Induced Temperature Increase in Guinea-Pig Fetal Brain In Vitro”, Ultrasound in Med. & Biol., 24(5); 1998; 697-704

47. Horder M.M., Barnett S.B., Vella G.J., Edwards M.J. and Wood A.K.W., “Ultrasound-Induced Temperature Increase in Guinea-Pig Fetal Brain In Utero: Third-Trimester Gestation”, Ultrasound in Med. & Biol., 24(9); 1998; 1501-1510

48. The Columbia Encyclopedia, Sixth Edition. Copyright © 2002 Columbia University Press” http://www.bartleby.com/65/pa/parameci.html”

49. http://www.microscopy-uk.org.uk/mag/artmar99/marimg99.html Micscape Article: Paramecium, Text by Mike Samworth, images by Mike Morgan. Dec. '95, (Updated by the Micscape Editor April 2000)

50. 譯者:孫克勤,普通動物學,徐氏基金會出版,pp. 177-178,民國六十七年十一月二十八日四版。

51. Lauterborn W., Numerical Investigation of Nonlinear Oscillations of Gas Bubbles in Liquids, J. Acoust. Soc. Am., 59; 1976; 283-293
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.208.72
論文開放下載的時間是 校外不公開

Your IP address is 18.217.208.72
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code